
Practice and Evidence of Scholarship of Teaching and Learning in Higher Education 
Vol. 1, No. 2, October 2006, pp. 117-128 

117 

 

Targeted remediation for a computer programming course using 
student facilitators 

 

Steve Draper* 
Department of Psychology 

University of Glasgow 
s.draper@psy.gla.ac.uk 

Tel: 0141 330 5089 
Quintin Cutts 

Department of Computing Science 
University of Glasgow 
Quintin@dcs.gla.ac.uk 

Tel: 0141 330 5619 

 

 

Abstract 

 
The first results from a new intervention are presented.  This paper describes the 

originally identified need (a very high failure rate in a subgroup completing a computer 

programming course, with important consequences for student dropout); a remediation 

intervention (timetabled student study groups facilitated by senior students, not staff); 

the positive effect on subsequent exam measures; and some strongly positive 

qualitative feedback from the students.  Finally some educational analysis is presented:  

both the original rationale for the intervention, and a reinterpretation in the light of the 

outcomes. 

 

Keywords: retention, computer programming, peer tutoring, remediation. 

 

 

The problem identified 

 

A few years ago, numbers of applicants for computing science courses collapsed 

generally at least across the UK.  At the university in this study, there were 480 in the 

first year class in 2001, but by 2005 only about 180.  From 2002 the progression 

requirement from year 1 to year 2 was lowered from the original firm requirement of two 

                                                
* Corresponding author  
 
ISSN 1750-8428 (online) www.pestlhe.org.uk 
 PESTLHE 
 



Draper and Cutts 

 

 

118 

C grades, the more important of the two being the grade obtained in the first year 

programming course.  In summer 2005, an analysis was done of what had happened to 

the students who had entered year 2 but who would not have previously been allowed 

to.  It found that on average 89% of these had failed to get a C grade in the year 2 

computing course, and so could not progress to year 3, and many of these had 

subsequently dropped out of the university. 

 

The context of this is a university with four year degrees, and where students do several 

different subjects in the first two years before specialising in the third and fourth years.  

While performing poorly in one discipline (computing science) does not necessarily 

prevent progression to a different subject in later years, in practice it often does.  Within 

computing science, it is computer programming that is most often the key topic leading 

to failure. 

 

Dropout statistics are fraught with complexities, especially in the short term, since it is 

only failure to complete a degree after say ten years that is definitive from all 

viewpoints.  Here we will say that the only fully satisfactory outcome of taking a 

programming course is to achieve a grade C.  Those who do not attain this, we classify 

here, for the purposes of the new accelerator course, as "at-risk".  In addition, it is 

desirable that they achieve a grade C average across all their computing courses which 

would definitely qualify them for progression to computing science courses in the next 

year.  Using two years of figures, we can say that of 51 students who were at-risk on 

entry to the year 2 course, 27 had already dropped out of the university when the 

analysis was done and a further 19 were repeating a year.  In the past a large majority 

of these fail to finish a degree.  We can therefore say that over half of those "at-risk" 

are already known to have become dropouts, in reality about four fifths probably will. 

 

In the three years preceding the intervention, of those entering the year two computing 

course at risk, only a very small proportion improved up out of the at-risk category to 

gain a grade C average to guarantee progression: 7%, 16%, and 10% respectively.  

The narrow aim of the intervention was to have them achieve at least a grade C in the 

year two programming course, and the wider aim was thereby to reduce the number 

who would subsequently be lost to the university. 



Targeted remediation for a computer 
programming course using student facilitators          October 2006 
 

 

 

  

119 

The remedy designed 

 

The remedy that was designed and implemented was an "accelerator course": an 

additional mini-course for programming run in the first few weeks of the second year, 

primarily for the at-risk students.  It consisted of sessions run by final year students who 

had experience of facilitating Peer Assisted Learning sessions.  Whilst aimed at this 

target set of students who were strongly urged to attend, it was also open to other 

students.  There were (for each student) an initial two hour session run by a member of 

staff, then five sessions per week for the first two weeks of term, then three per week 

for the next two weeks, then two per week for another two weeks.  That concluded the 

originally planned set, although student demand led to continuing sessions for the 

remainder of the term.  The first session began the mini-course with motivation and 

reflection conducted by a staff member.  After that the pattern was working on 

programming problems individually, and when problems arose peer discussion was first 

used to attempt resolution, followed by expert input from the facilitators if the whole 

group was stuck on the same issue.  A key aim was the establishment of steady and 

purposeful work habits, and hence increased time on task, but even more important (we 

think in retrospect) was the guarantee of expert knowledge if required so that students 

were not left stuck.  This is discussed below in the section on "educational 

interpretation". 

 

The institutional financial perspective 

 

From the university's point of view, it loses about £7,000 per year for each student who 

drops out before completing a degree leaving vacancies in courses in higher years. 

 

The cost of the accelerator mini-course was £1400 for paying facilitators plus £400 for 

the follow on sessions not originally designed for; the staff organiser had an additional 

20 hours contact time costed at roughly £1,000 under FEC (Full Economic Costing), 

plus about the same amount again organising the scheme e.g. booking rooms, 

supplying the week's problems and other materials, managing the facilitators, etc.;  plus 

a harder to quantify amount of work designing it in the first place.  The overall cost that 

would recur each year if this became established practice (i.e. discounting the cost of 

designing the intervention and gathering evaluation data) would be about £4000.  Thus 



Draper and Cutts 

 

 

120 

retaining a single student for a single additional year who would otherwise drop out 

would pay for the scheme nearly twice over from the institution's viewpoint. 

 

Attendance data 

 

There were 21 who formed the target "at-risk" group entering the second year 

computing course, having got less than a C grade in programming the year before, and 

six who opted to attend even though they had achieved a C grade in first year.  

 

Attendance was recorded at every session in the scheme, for the 18 (after allowing for 

university holidays) scheduled slots for each student.  There were 10 "non-attenders" 

who attended none or only the initial session; the 3 "low attenders" who attended less 

than half (5-8) of the subsequent sessions; and the 8 "high attenders" who attended 

more than half (10-17) the sessions.  (Note then that all this effort and expense 

benefited only 8 students, costing about £500 per student.) 

 

If attendance is voluntary, then it is a behavioural indicator of real student attitudes (as 

distinct from what they may say partly to please the listener).  If, additionally, student 

opinion on what helps them is a good indicator (and it is the only indicator behind many 

decisions on modifying teaching delivery), then there is something valuable here at 

least for the 8 of 21 at-risk students who attended over half (10 or more) of the sessions 

(plus another 6 with good attendance who were not in the at-risk category). 

 

From a practical, formative point of view, one of the big questions our evaluation failed 

to answer was why only half of the at-risk students attended.  Because in this first year 

the intervention was designed only shortly before term began, it was not in the course 

documentation nor was the wider culture of tutors and past students aware of it: 

attendance depended entirely on the announcement at the enrolment meeting.  We do 

not know whether more could be persuaded to attend, and how that might best be 

done; or whether on the other hand, those who did not attend would not have benefitted 

and correctly self-selected themselves out of the accelerator course. 

 

The objective (exam marks) data 

 

The most direct and narrow measure of any effect of the accelerator course (which was 

targeted at programming rather than computer science in general) was performance by 



Targeted remediation for a computer 
programming course using student facilitators          October 2006 
 

 

 

  

121 

the "at-risk" subset (defined by those with lower than C grade results in the previous 

year's programming module) on the second year module most concerned with 

programming, and which ran in the first semester concurrently with the accelerator 

course.  The exam results showed that of the "at-risk" target group as a whole in 2005-

6 (21 students), 4 (19%) achieved a C grade or better in the year two programming 

course, and three of these attended at least 8 sessions of the accelerator course.  This 

is better than any of the three previous years. 

 

Table 1 Proportions achieving a C grade in programming (of those who completed the 

year) 

Year At risk C grade % 

2002-3 37 3 8% 

2003-4 28 4 14% 

2004-5 18 2 11% 

2005-6 21 4 19% 

*2005-6 highA 8 2 25% 

*2005-6 nonA 10 1 10% 

 

As the table shows, non-attenders perform similarly to past years, when a few achieved 

improving to a C grade, but high attenders (although the absolute numbers are very 

small) show about twice the number doing so.  Analysing only the high attenders is the 

best measure of the potential power of the intervention: it can't be expected to have had 

an effect on those who didn't attend.  On the other hand, analysing the whole cohort of 

at-risk students addresses the practical management question of the effect of simply 

providing the intervention to the class the way we did.  It is the difference between 

different stages of applied research: in testing a vaccine for instance, it is the difference 

between reporting on patients with a real need but for whom delivery was definitely 

achieved, versus the effect of a national programme with all the issues of how many it 

reaches in practice.  If in subsequent years we manage to induce higher attendance, 

then we might see either the larger effect achieved more widely, or on the other hand 

practical factors might emerge that block the apparent promise of the intervention. 

 

Even for the high attenders, it is far from a reliable remedy:  of the eight at-risk who 

attended 10 or more sessions, six failed to get a C, although two did.  The negative 

aspect is that there is still only a 25% chance of an at-risk student improving to the 



Draper and Cutts 

 

 

122 

stronger position for progression of achieving a C grade.  The positive aspect is that this 

represents doubling the proportion from previous years of those who do this. 

 

There are also other indications of benefit from the accelerator course.  In general there 

are indications both of an association (Spearman rank correlation 0.39, p < 0.45 one-

tailed) between attendance at the accelerator course and marks on the year two 

programming module, and of an improvement of the accelerator students relative to the 

other students.  The 21 at-risk students were by definition the bottom 21 of 111 by rank 

in the class on entry (as defined by their marks the previous year in programming).  By 

the end of the second year course, eight of the at-risk students (six of them non-

attenders at the accelerator course) were still in the bottom 21 places;  in contrast eight 

(all medium or high attenders) were above the bottom 38 ranking places in 

programming and were at worst within 6% marks of achieving a C grade; and the 

remaining five were in between.  In other words, about a third were helped a lot, about 

a third improved somewhat relative to others in the class, and about a third did not 

improve and mostly did not attend. 

 

The impact on the broader goal of retention is also visible in the high-attending group, 

although small numbers must make interpretation tentative.  Only three (14%) of the 21 

at-risk students achieved an average of C across all computing courses (as opposed to 

the programming module), compared to 57 (46%) in the class as a whole, which is no 

better overall than previous years' at-risk students: but these were all high-attending 

students, so the proportion of high-attending at-risk students achieving a C average is 

an impressive 37.5% which is much higher than previous years.  

 

Table 2 Proportions achieving a C average  (of those who completed the year) 

Year At risk C average % 

2002-3 37 4 11% 

2003-4 28 5 18% 

2004-5 18 2 11% 

2005-6 21 3 14% 

*2005-6 highA 8 3 37% 

*2005-6 nonA 10 0 0% 

 

Finally, of those students who were not at-risk but opted to attend at least half the 

accelerator sessions, two failed to achieve a C or better, while four did.  

 



Targeted remediation for a computer 
programming course using student facilitators          October 2006 
 

 

 

  

123 

The subjective (attitude) data 

 

We interviewed an opportunistic sample of students at the end of the enrolment class at 

which the scheme was announced.  An important student comment noted in the 

evaluator's report on interviews was "I thought universities didn't do this kind of thing" 

(expressing relief and approval that such a scheme was being put on). 

 

We attended one of the last meetings of each group and conducted both a form of 

group interview, and a questionnaire with open-ended questions in.  This approach 

meant we essentially only sampled students who thought the scheme worthwhile, and 

failed to get feedback from those whose behaviour suggested they had dismissed it 

early on as not worth attending. 

 

The high-attending students, at least, clearly felt the scheme was engaging, valuable, 

and a major quality enhancement for them, as illustrated by these quotes: 

 

Written comments: 

 

• "A drastic improvement in my study habits.  I do a lot more work in the lab as well 

as at home."   

 

• "I used to ask many fewer questions, and sometimes give up". 

 

From the evaluator's notes on a group discussion: 

 

• "Some said that the sessions allowed them to understand the lectures better; and 

that they were now able to ask more questions in lectures and tutorials."   

 

• "One did say that others in [the] class now realised that these accelerator 

students understood pointers i.e. [understood this taught concept] better than the 

rest of the class." 

 

These comments give a little insight into the ways the process might benefit students.  

However since the sample was not representative, and the exam and attendance data 



Draper and Cutts 

 

 

124 

has a more direct bearing on the overall purposes of the intervention, we will not report 

further on the qualitative data.  

 

Educational interpretation  

 

The process of designing the intervention and then doing the evaluation has 

substantially modified our views on what the issues are. 

 

The usual view, superficially supported by observation, is that programming depends 

primarily upon aptitude, not effort nor teaching.  There is a great range of personal 

ability even among those already trained and holding permanent commercial jobs in 

programming (a factor of at least 100 in productivity between best and worst in a team 

is widely quoted), let alone among incoming students.  On Masters conversion courses, 

it is not unknown for students with a first class degree in another discipline to fail the 

programming component and the whole MSc degree:  general ability and hard work 

seem not to be enough even to scrape through.  On the other hand, the teaching staff's 

own personal experience, like that of many successful computing students, is of 

learning new computer languages themselves without needing any personal teaching.  

There seem thus to be grounds for attributing student success or failure to the students' 

own aptitudes, and not to the teaching, just as you would not expect a deaf person to 

hear you if only you learned to speak better.  On this aptitude view, the prediction would 

be that interventions such as the accelerator course could make little difference;  that 

marks on a programming course largely indicate aptitude; and that students who 

attempt to continue with low marks are ill-advised.  The exam marks results are not 

strong enough to disprove this, but do contain definite indications that other more 

tractable issues might also be important. 

 

Another somewhat different view is that effort and a particular pattern of study work is a 

main determinant of success.  Learning computer programming requires surprisingly 

long hours of practice: it is not something that can be done in an intense burst of work 

shortly before an exam.  Neither is reading or listening to lectures a central aspect: it is 

doing examples or otherwise practising.  Thus to an even greater extent than in many 

other subjects, it is time on task (Chickering & Gamson, 1987) that is likely to predict 

success.  Hence too, student "engagement" in the sense of actually working on the 

subject, is crucial.  This dependence on suitable study habits is consistent with Breen's 

work (Breen, 2002; Breen & Lindsay, 2002) suggesting that student success depended 



Targeted remediation for a computer 
programming course using student facilitators          October 2006 
 

 

 

  

125 

on a match between a student's preferred study habits and the demands (rather than 

the conceptual content) of the subject they choose.  Some student comments, and the 

association in our results between number of sessions attended and grade in the 

second year programming course, offer support for this. 

 

Related to this, from the staff perspective, poor attendance, failure to hand in course 

work, not wishing to talk to anyone about the course are all signs of a problem, and 

likely to be predictive of failure.  A part of our thinking at the design stage, consistent 

with this, was somewhat punitive: that the problem was to convince these students that 

they were at-risk and should be frightened of failing, and that this is why they should 

turn up to extra timetabled hours (five per week at first) and work harder.  This attitude 

of ours was rather markedly disconfirmed in the interviews after the enrolment session 

by the considerable approval expressed by students for the provision of the accelerator 

course, including the rather plaintive remark quoted earlier, that it was perceived as 

support that was sorely needed. 

 

Another strand of our thinking was based on our experience of PAL (Peer Assisted 

Learning) schemes.  These have many potentially beneficial elements behind the basic 

recipe of regular meetings for client students on a course, run without a staff member 

by older students (http://www.psy.gla.ac.uk/~steve/pal/).  One aspect is the supportive 

atmosphere of small groups organised to help each other where possible, and to draw 

on more experienced students when necessary.  While the tone of each group varies a 

lot with the particular personalities of the facilitators, they clearly tend to promote both 

social and academic integration, which Tinto (1975) theorises as the essential factors in 

predicting student dropout or retention.  The feedback we got from the evaluation made 

it clear that (at least for the high attendance students) the participants did find the 

groups had a strongly supportive atmosphere.  While this gains student approval, and is 

consistent with aspects of the education literature, it is not clear from our results that 

this is a determining factor in these students' success or failure. 

 

However questions about whether the participants felt they could have organised the 

meetings as study groups themselves, and so not really require facilitators, made it 

clear that another factor was very important, and indeed perhaps the most important.  

This was that, although much of the time in the groups was spent on individual work, 

and then if participants were stuck the next thing was to attempt to resolve it by peer 

discussion, nevertheless an essential aspect was having more experienced students 



Draper and Cutts 

 

 

126 

present to give expert technical input when necessary.  Indeed, the students suggested 

that this was common: that the points that were sticking points for one were often so for 

the whole group, so that peer assistance was often technically (although not socially) 

ineffective.  This draws attention to how in a subject where the important learning is 

largely done by solo work on examples, a student with a conceptual difficulty they 

cannot themselves resolve, can in fact not learn anything more until they gain access to 

expert help.  While in comparison to some other courses, programming is heavily 

resourced with weekly meetings with tutors as well as the lectures, having to wait for a 

week before any more learning can be done would be a very serious barrier to progress 

regardless of motivation. 

 

One view of this is that it is about improving student access to feedback, and the 

enormous importance of this to learning (Nicol & Macfarlane-Dick, 2006).  On this view, 

these sessions gave students almost daily opportunities for feedback, and this could be 

expected to be much more productive than weekly feedback.  Note however that this is 

not feedback in the sense of a learner needing judgements by teachers (e.g. marks 

and/or pointing out where something is wrong).  In programming this is mostly self-

evident, or generated by the computer.  Instead, the crucial element seems to be 

explanations either of the key concepts or of what is wrong with the offending piece of 

code.  Human (re)explanation, not judgement, is what is essential.  In particular, it is 

likely to be explanation from another person: usually the original lecturer (or textbook) 

will have given their best explanation the first time.  In cases where this is not effective, 

repeated access to the same source is seldom useful: what is wanted is the view from 

another mind.  Senior students are not just cheap: they will have a different view, a 

different way of expressing ideas, and are closer to the learners' perspective. 

 

What has been shown 

 

The absolute numbers are very small, so a) this is not a huge smash-hit effect or it 

would be clearer even with small numbers; b) conclusions must be tentative.  However 

multiple indications do all point the same way. 

 

It looks as if there is a measurable beneficial effect for students who attended the 

accelerator course for at least half the sessions compared to non-attending at-risk 

students.  This is indicated by the numbers of attenders compared to non-attenders 

attaining a C grade in the DSA2 programming module, in the substantial move up the 



Targeted remediation for a computer 
programming course using student facilitators          October 2006 
 

 

 

  

127 

ranking in class even for those who got a D grade, and in the number getting a C 

average across the six computing modules.  For the first two of the measures, there is 

also a measurable effect in comparison to previous years for the at-risk group as a 

whole (i.e. grouping attenders and non-attenders together). 

 

Nevertheless we have to remember that the odds are still very much against an at-risk 

student rising to a C average and so having an unequivocal opportunity for honours 

computing:  even after the full benefit of this intervention we can only estimate their 

chances at 25% which is half that of the class as a whole.  It would seem that the 

aptitude factor remains a powerful influence, even if this intervention suggests that the 

teaching staff are not wholly powerless to help apparently weaker students improve 

their level of measured achievement. 

 

Finally, there was one other clue in this trial.  Deriving from the aspect of the original 

staff thinking that saw this as a "motivation" problem, the at-risk students were divided 

into two groups with different facilitators.  In one of these groups ("the cosy group"), the 

emphasis was on a supportive atmosphere and avoidance of any note of confrontation.  

In the other ("the kicked group"), the students were generally not only set targets on 

work to complete before coming to the next scheduled meeting, but were each 

questioned every session on the degree to which they had met these targets.  The at-

risk students who achieved C grades were all in the "kicked" group.  We are not in a 

position to draw a strong conclusion from this:  these groups were not randomly but 

self-selected, and they met at contrasting times of day (9am and 5pm) which might well 

have an effect.  However it does suggest that, while clearly greatly appreciated by 

students, the feeling of support by itself is not effective in raising learning outcomes, 

while a change to study habits and particularly to time on task, is.  Taking the feedback 

and data as a whole, we are now less inclined to focus on the punitive metaphor than 

on the basic practice of a regular and inter-personal review of actual learning activity, 

and plan to institute this in all groups in the next implementation. 

 

Acknowledgements 

 

We would like to thank Mel McKendrick for donating her time to help with the 

evaluation. 

 



Draper and Cutts 

 

 

128 

References 

 

Breen, R. (2002)  Motivation and Academic Disciplines in Student Learning Unpublished Ph.D. Thesis, 

Oxford Brookes University. 

 

Breen, R.  &  Lindsay,R. (2002)  "Different disciplines require different motivations for student success"  

Research in Higher Education  vol.43 no.6  pp.693-725 

 

Chickering,A.W. & Gamson,Z.F. (1987) "Seven principles for good practice in undergraduate education" 

American Association of Higher Education Bulletin pp.3-7  

 

Nicol, D.J. and Macfarlane-Dick (2006)  "Formative assessment and self-regulated learning: a model and 

seven principles of good practice"  Studies in Higher Education vol.31 no.2 pp.199-218 

 

Tinto,V. (1975) "Dropout from Higher Education: A Theoretical Synthesis of Recent Research"  Review of 

Educational Research vol.45, pp.89-125. 


